Ремонт и строительство - Оптическое стекло

09 февраля 2011


Оглавление:
1. Оптическое стекло
2. Типы оптических стёкол
3. Производство
4. Дефекты
5. Обработка
6. История



прозрачное стекло специального состава, используемое для изготовления различных оптических приборов.

От обычного технического стекла отличается особенно высокой прозрачностью, чистотой, бесцветностью, однородностью, а также строго нормированными преломляющей способностью и дисперсией. Выполнение всех этих требований значительно усложняет его производство.

В силу исключительно высоких требований, предъявляемых к качеству изображения оптических систем, естественно возникла необходимость в изготовлении широкого ассортимента специальных сортов стекла, различных по своим свойствам.

Химический состав

В основном в состав оптического стекла входит кремнезём, сода, борная кислота, соли бария, окись свинца, фтористые соли и другие вещества.

Основные оптические свойства стекла

Основные свойства оптического стекла характеризуются показателем преломления, средней дисперсией и коэффициентом дисперсии. В отдельных случаях для характеристики оптических стёкол используется частные дисперсии и относительные частные дисперсии.

Показатель преломления

С XIX века и до недавнего времени для характеристики оптических стёкол использовался показатель преломления ~n_D, определяемый для жёлтой спектральной D-линии натрия.

Однако это не одиночная линия, а пара: так называемый «натриевый дублет», что не могло не сказаться на точности измерений. Поэтому сейчас в качестве главного показателя преломления принимают его значение либо для жёлтой d-линии гелия с λ=587,56 нм, либо для жёлто-зелёной e-линии ртути с λ=546,07 нм. Первый используется такими производителями как Schott, Hoya, Ohara и др., второй, в частности, принят в документации российских производителей.

В настоящее время достигнутые пределы значений ~n_d промышленных оптических стёкол составляют примерно 1,43 — 2,17.

Допустимое отклонение зависит от категории оптического стекла и нормируется величиной ±×10

Средняя дисперсия

Средняя дисперсия — определяется как разность показателей преломления nF для синей линии спектра λ=488,1 нм и nC для красной линии спектра с λ=656,3 нм; Величина средней дисперсии представляется как×10 и лежит в диапазоне 639 — 3178, с допустимым отклонением ±×10.

Коэффициент дисперсии

Коэффициент дисперсии — задаётся отношением разности показателя преломления ~n_\lambda без единицы к средней дисперсии.
Ранее определялось выражением, включающим показатель преломления ~n_D для жёлтой спектральной линии натрия.

\nu_D=\frac{n_D - 1}{n_F - n_C}


В настоящее время основными вариантами коэффициента дисперсии являются, либо

\nu_d=\frac{n_d - 1}{n_F - n_C}

либо

\nu_e=\frac{n_e - 1}{n_{F'} - n_{C'}}

где средняя дисперсия определяется, как разность показателей преломления для голубой и красной линий кадмия.

В настоящее время значения ~\nu_d для промышленных оптических стёкол находятся в пределах от 17 до 95.

Частные дисперсии и относительные частные дисперсии

Частные дисперсии — это разности ~n_{\lambda_4}-n_{\lambda_5} двух значений показателя преломления при некоторых произвольно выбранных длинах волн ~\lambda_4 и ~\lambda_5, не совпадающих с длинами волн ~\lambda_2 и ~\lambda_3, выбранными для расчёта средней дисперсии.

Относительные частные дисперсии ~P_{{\lambda_4}{\lambda_5}} — это отношения частных дисперсий к средней дисперсии.

P_{{\lambda_4}{\lambda_5}}=\frac{n_{\lambda_4} - n_{\lambda_5}}{n_{\lambda_2} - n_{\lambda_3}}

Хотя, для большинства оптических стёкол зависимость относительных частных дисперсий от коэффициента средней дисперсии близка к линейной, однако, зависимость показателя преломления оптического материала от длины волны света представляет собой сложную кривую. Форма этой кривой определяется параметрами конкретного материала и будет различной для разных типов оптических стёкол. Таким образом, частные дисперсии и относительные частные дисперсии служат для детализации зависимости изменений показателя преломления стекла от изменений длины волны.

Такая детализация необходима при расчёте высококачественных ахроматических и апохроматических компонентов, поскольку учёт хода относительных дисперсий, на этапе выбора стёкол, позволяет в дальнейшем значительно уменьшить вторичный спектр. Так как, в общем случае, величина вторичного спектра пропорциональна отношению разности частных дисперсий выбранной пары стёкол к разности показателей средних дисперсий этих стёкол.

\Delta s=f'\frac{P_1 - P_2}{\nu_1 - \nu_2}

где: ~P_1 и ~P_2 — относительные частные дисперсии; ~\nu_1 и ~\nu_2 — коэффициенты средней дисперсии; ~f' -фокусное расстояние объектива.

Для практики наиболее важны — частная дисперсия для синего участка спектра ~n_g-n_F или ~n_g-n_{F'} и соответствующая ей относительная частная дисперсия ~P_{gF}, поскольку в пределах именно этого участка показатель преломления материалов изменяется с длиной волны наиболее значительно.

Коэффициент поглощения света

Составляет не более 0,2-3,0 %.



Просмотров: 6932


<<< Низкодисперсионное стекло
Пористое стекло >>>